SCHEME ANSWER

OBJECTIVE

1.	Α	S.I unit for pressure is Pascal.		
2.	Α	Instrument A is the most sensitive because it has the smallest scale of 0.5 V.		
3.		Converting units of m s ⁻¹ to km h ⁻¹ 330 m s ⁻¹		
	С	$= 330 \times 10^{-3} \times 3600$		
		$= 1188 \mathrm{km} \mathrm{h}^{-1}$		
4.		The speed of the boy at R is		
		$mgh = \frac{1}{2}mv^2$		
	В	$v = \sqrt{2gh}$		
		$v = \sqrt{2(10)(1.5)}$		
		$= 5.477 \text{ m s}^{-1}$		
5.		From the equation given, $y = p + qx$, the gradient of graph y against x is q because		
		y = y-axis / paksi - y		
	В	$\mathbf{x} = \mathbf{x}$ -axis / paksi x		
		q = gradient / kecerunan		
		p = intercept of y-axis / pintasan pada paksi - y		
6.	С	Inertia has no unit because Inertia is the property of matter that causes it to resist any change in its motion or state of rest. When mass increase, inertia will increase		
7.	в	The gradient of the graph of velocity against time increases, the acceleration will also		
8.	-	Principle of conservation of momentum states that the total momentum of a system is		
	D	constant, unless external force acts on the system.		
9.		F = ma		
		upward force - weight = ma		
	Α	800000 - 500000 = 50000a		
		300000 = 50000a		
		$a = 6 \text{ m s}^{-2}$		
10.		The elastic potential energy stored in the rubber cord is		
		Elastic potential energy = $\frac{1}{2}$ kx ²		
	Α	$=\frac{1}{2}(300)(0.2)^2$		
		= 6 I		

11.	С	Manometer used to measure the pressure of a gas in an enclosed container. Note: Barometer an instrument measuring atmospheric pressure. Hydrometer an instrument that measures the specific gravity (relative density) of liquids.							
12.	С	Atmospheric pressure refers to the force that is exerted by the Earth's atmosphere on a unit surface area.							
13.		From Diagram 3, Pgas > Patm Gas pressure is equal to							
	Α	Pgas > Patm							
		Pgas = Patm + h							
		= Patm (atmospheric pressure) + 5							
14.	С	The buoyant force exerted on a container ship is equal to the weight of container ship and its load carried. Note: Buoyant force equal to weight of the object							
15.	В	Cooking oil is less dense than water. When density decrease, buoyant force increase,							
16.	В	The lower and upper fixed points used when calibrating a thermometer is respectively 0°C and 100°C.							
17.	D	Instrument can be used to give a reading of 35°C is thermometer which used to measure temperature							
18.	D	Increasing the exposed surface area of the water will increase the rate of evaporation of							
19		The absolute zero temperature can be obtained by extrapolating the graph until it							
10.	В	intercept the T-axis because absolute zero is the lower limit of the thermodynamic temperature scale. Absolute zero is taken as -273.15° on the Celsius scale.							
20.		The specific heat capacity of liquid x in J kg ⁻¹ °C ⁻¹ is							
		$Q = mc\theta$							
	D	$Q = Pt = 1000 (6 \times 60)$							
		$c = \frac{1}{m\theta} = \frac{1}{m\theta} = \frac{1}{0.6(60-30)}$							
		$c = 20000 J kg^{-1} {}^{o}C^{-1}$							
21.	В	The characteristic of image formed by a plane mirror is virtual , upright, same size and laterally inverted.							
22.	Α	The distance between P and F is the focal length of the mirror							
23.	D	Normal adjustment for the astronomical telescope at $L = fo + fe$ which is fo>fe							
24.	С	Microscope use a convex lens to focus all the light rays. Object distance is between f and 2f to produce real, inverted and magnified image.							
25.		Ray diagram for convex mirror which is 1 st ray to focal length 2 nd ray to centre of curvature							
	В	Objek 2 F C							

26.	в	Velocity of the water wave decrease when it travels from point Q to point P because region Q is deep region and P is shallow region. The wavelength also decrease as the velocity decrease due to refraction of wave.						
27.	С	Sound wave cannot travel through vacuum because it need a medium to propagate.						
28.	A	Arrangement of spectrum electromagnetism are R Radio wave M Microwave I Infrared L Light U UV X X-ray G Gamma ray						
29.	A	Wavelength of the water waves a = 3 cm $x = \frac{16}{2} = 8 \text{ cm}$ D = 18 cm $\lambda = \frac{ax}{D} = \frac{3 \times 8}{18} = 1.33 \text{ cm}$						
30.	В	Characteristics of microwave makes it suitable to be used in satellite communication it has a high frequency, so it can travel further.						
31.	A	The reason a fuse is used in an electrical device is to protect the device. Note: A fuse is a type of low resistance <u>resistor</u> that acts as a <u>sacrificial device</u> to provide <u>overcurrent</u> protection, of either the load or source circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, interrupting the circuit that it connects						
32.	В	Tungsten is chosen to be used as the filament of an electric bulb rather than copper. This is because The melting point of tungsten is higher and it can withstand higher temperature when resistance increase.						
33.	С	When the sphere ball touches the negatively charged plate, the ball receives negative charges from the plate, so the sphere is negatively charged.						
34.	D	Series arrangement will produce higher effective resistance because Re = R1+R2+R3, so low current flow.						
35.	Α	All the current flows through the bulb A, so it is brightest. Bulb B, C have the same current as in the arrangement of the series. While the bulb D, the current flow is higher than B and C. $ _{A}> _{D}> _{B+C}$						
36.	С	 The operation of a transformer based on electromagnetic induction. Working principle of the transformer: Alternating current flows in the primary coil induces a magnetic field in the soft iron core The magnetic field is constantly changing The secondary coil also experienced magnetic flux linkage which is constantly changing Hence an alternating e.mf. is induced in the secondary coil 						

46.		The uses of cathode-ray oscilloscope are:
	D	1. To measure a D.C or A.C voltage
	D	2. To measure a short time intervals
		3. To display the waveform
47.		$^{214}_{82} \text{Pb} \rightarrow ^{214}_{83} \text{Bi} + ^{0}_{-1} \text{X} + \text{Y}$
	D	
		X = beta particle
		Y = gamma ray
48.	٨	Radiation was being detected is gamma ray because it has higher penetrating power
	A	and be stopped by a few centimetres of lead or concrete.
49.		Nuclear fusion is the combining of two lighter nuclei to form a heavier nucleus, releasing
	D	a vast amount of energy during the process. Very high temperature and pressure is
		required to give high kinetic energy.
50.	P	Nuclear fission is a process of splitting a heavier nucleus into two lighter nuclei and
	U	emitting several neutron and energy.

STRUCTURE

NO.			ANSWER	MARK
1.	(a)	(i)	mercury	1
		(ii)	Expansion / increase in volume	1
	(b) (i) thermometer X			1
		(ii)	The smallest division is smaller // able to detect the smallest change in temperature	1
			TOTAL	4

NO.			ANSWER	MARK	
2.	(a)	(i)	Total internal reflection	1	
		(ii)	The refractive index of Y is higher than the refractive index of X $//$ vice versa	1	
	(b) Sin c = $\frac{1}{n} = \frac{1}{2.1} = 0.4762$			1	
			c = 28.44°	1	
	(c) Prism periscope // prism binoculars // endoscope				
	TOTAL				

NO.			ANSWER	MARK
3.	(a)	(i)	Constant // uniform velocity // acceleration is zero	1
		(ii)	Constant acceleration // increasing velocity uniformly followed	1
			by zero acceleration // constant velocity	
	(b)	(i)	Zero / /F = 0 N	1
		(ii)	constant // uniform velocity // acceleration is zero	1
	(c)		1- a curve with the increasing gradient (from 2.00 pm – 2.01 pm) 2- Straight line (> 2.01pm)	2
			TOTAL	6

NO.			ANSWER	MARK
4.	(a)		Reflection of wave	1
	(b)		Higher frequency // can travel further	1
	(c)	(i)	$d = \frac{vt}{2} = \frac{1560 \times 1.5}{2}$ = 1170 m	1 1 (awu)
		(ii)	 1- Distance between two pulses is 3 cm 2- Amplitude is smaller Image: Constraint of the second cm 	2
	1		тоти	AL 6

NO.		ANSWER	MARK
1.	(a)	Time	1
	(b)	Seconds // minutes	1
	(C)	Minutes // the pointer has pass 1 minutes // 60 s	1
	(d)	66.4 s // 1 min 6.4 sec	1 (awu)
	-	TOTAL	4

NO.			ANSWER	MARK	
2.	(a)		North	1	
	(b)	(i) (ii)	Solenoid	1 1	
			Galvanometer		
	(C)		Lenz's Law	1	
	(d) Move the magnet faster // Use stronger magnet				
	TOTAL 5				

NO.			ANSWER	MARK		
3.	(a)	(i)	Net flow of heat is zero // same temperature	1		
		(ii)	40°C	1 (awu)		
	(iii) Prevent heat loss to surrounding					
	(b)	(i)	Heat supplied by hot metal = heat received by water $m_1C_1 \theta_1 = m_2C_2 \theta_2$ $0.4 \times C_1 \times (100-40) = 0.2 \times 4200 \times (40 - 28)$ $0.4 \times C_1 \times 60 = 0.2 \times 4200 \times 12$ $C_1^1 = 420 \text{ J kg}^{-1} \text{ °C}^{-1}$	1 1(awu)		
		(ii)	Heat released by water is absorb by the metal // no heat loss to surrounding	1		
			TOTAL	6		

NO.			ANSWER			MARK			
4.	(a)		Logic gates are ele	nd 1					
	(b)	(i)	Detector 1 0 0 1 1						
		(ii)							
		(iii)		1					
	(C)	(i)	LDR / light detecti	1					
	(ii) Thermistor / heat detecting resistor					1			
					TOTA	L 6			

TRIAL PAHANG SET B 2015

NO.			ANSWER	MARK
1.	(a)	(i)	Reflection	1
1.	<u>(a)</u>	<u>(i)</u> (ii)	Plane mirror Car Q	2
	(h)			4
	(a)			
			TOTAL	4

NO.			ANSWER	MARK
2.	(a)	(i)	Alternating current	1
		(ii)	Time interval between two dots which is 0.02s	1
	(b)	(i)	v/ms ⁻¹	
				2
		(")		
		(11)	Constant // unchanged	1
			TOTAL	5

NO.			ANSWER	MARK		
3.	(a)	(i)	Metal plate	1		
		(ii)	Latent heat of fusion	1		
		(iii)	Heat absorb to overcome the force attraction between the molecule // kinetic energy constant	1		
	(b)		$4.4 \times 10^3 = (0.0125) I$ I = 352000 J kg ⁻¹	1 1(awu)		
	(C)		Condensation	1		
	TOTAL					

	NO.		ANSWER	MARK
4.	(a)	(i)	Force per unit area // force acting perpendicular a unit area	1
		(ii)	Pressure exerted in Diagram 4.1 > in Diagram 4.2	1
		(iii)	Cross sectional area increase, pressure decrease	1
	(b)	(i)	$0.45 \times 4 = 1.8 \text{ m}^2$	1(awu)
		(ii)	$P = \frac{F}{A} = \frac{76230}{1.8}$ = 42350 Pa	1 1(awu)
	(c)		Higher pressure exerted in a small cross sectional area (car will sink)	1
			TOTAL	7

	NO.		ANSWER	MARK
1.	(a)		Triple beam balance	1
	(b)	(i)	Zero adjustment knob	1
		(ii)	To adjust zero reading of the instrument	1
	(C)		62.4 g	
			TOTAL	4

	NO.		ANSWER	MARK		
2.	(a)	(i)	Elasticity is the property of an object to return to its original length // shape after force exerted is removed	1		
		(ii)	The spring is permanently deformed/damage // It has reached its elastic limit // Beyond the elastic limit, Hooke's Law is no longer applied	1		
	(b)	(i)	Extension, $x = 5$ cm	1(awu)		
		(ii)	Upper spring, 100 g \rightarrow x = 5 m Two lower parallel springs, 100 g \rightarrow x =2.5 m Total extension = 5 + 2.5 = 7.5 cm Total length, y = 10+10+5+2.5 = 27.5 cm	1 1 (awu)		
	TOTAL					

	NO.		ANSWER	MARK		
3.	(a)		Gamma ray	1		
	(b)	(i)	Q neutral	1		
		(ii)	P and R has charges // P has positive charge //	1		
			R has negative charge			
	(C)	(i)	141	1		
		(ii)	$E = mc^2$			
			$= (2.988 \times 10^{-28})(3 \times 10^8)^2$	1		
			= 2.6892 x 10 ⁻¹¹ J	1(awu)		
	TOTAL					

NO.		ANSWER	MARK
4. (a)	(i)	Thermal equilibrium is a condition where the net rate of heat transfer between two bodies that are in contact is zero // same temperature	1
	(ii)	The heat is transferred (higher temperature to lower temperature) The net rate of heat transfer is zero // Temperature is equal	1
(b)	(i)	$m_{w} c_{w} (95 - \theta) = m_{e} c_{e} (\theta - 27)$ 0.6 (4200)(95 - \theta) = 0.05(3320)(\theta - 27) \theta = 90.78 °C	1 1 1(awu)
	(11)	INO heat loss to the surrounding.	1 7

TRIAL PERAK 2015

	NO.		ANSWER	MARK
1.	(a)	(i)	distance AB = $3/2 \lambda$	
			3/2 λ = 21 m	
			λ = 14 m	1(awu)
		(ii)	frequency, $f = \frac{25}{10}$	
			= 2.5 Hz	1 (awu)
	(b)	(i)	Speed of wind // depth of water	1
		(ii)	Vertical distance A to $B = 2$ amplitude = 1.0 m	
			amplitude = 0.5 m	1(awu)
			TOTAL	4

NO.			ANSWER	MARK
2.	(a)	(i)	Q	1
		(ii)	high speed	1
	(b)		smaller nozzle	1
			increase speed, reduce pressure	1
	(C)		Bernoulli's principle	1
			TOTAL	5

	NO.		ANSWER	MARK
3.	(a)	(i)	The action of bringing a liquid to the temperature at which it	1
			bubbles and turns to vapor	
		(ii)	No changed // cross sectional area not influence the boiling	1
			process	
		(iii)	Boiling point decrease	1
	(b)		Q = Pt	
			Pt = mL	
			$60 \times 5 \times 60 = 0.75 \times L$	1
			$L = 24 \ 000 \ J \ kg^{-1}$	1(awu)
	(C)		Penyulingan berperingkat	1
			TOTAL	6

	NO.		ANSWER	MARK		
4.	(a)	(i)	A product of force and displacement in the direction of the	1		
			applied force			
		(ii)	E = m g h			
			$= 2 \times 7 \times 10$	1		
			= 140 J	1(awu)		
		(iii)	Principle of Conservation of Energy	1		
			Gravitational Potential Energy → Kinetic Energy	1		
	(b)		Ep = Ek			
			$140 = \frac{1}{2} \times 2 \times v^2$	1		
			$v = 11.83 \text{ m s}^{-1}$	1(awu)		
	TOTAL					

NO.			ANSWER	MARK	
5.	(a)	(i)	P=1/f		
			= 1/0.05	1	
			= 20 Diopter	1(awu)	
		(ii)	5 cm	1(awu)	
		(iii)	Angle of incidence = 60°	1	
			Angle of refraction = 45°	1	
	(b)		$n = \frac{\sin 60}{\sin 45}$ 1.23 = $\frac{3 \times 10^8}{v}$	1 1(awu)	
			V = 2.40 X 10 IIIS		
TOTAL 7					

NO.			ANSWER	MARK		
6.	(a)	(i)	series	1		
		(ii)	The car not functioning // the motor not functioning	1		
	(b)	(i)		3		
		(ii)	V = 5 v + 5 v = 10 V	1		
			Current flow is same (series)	1		
			I= 50mA + 50mA + 50 mA = 150 mA	1(awu)		
	TOTAL 8					

NO.			ANSWER	MARK
7.	(a)	(i)	A device used to raise or lower the potential difference of an alternating current supply	1
		(ii)	Q	1
			The number of primary coil is greater than the number of	1
			secondary coil or vice versa	
		(iii)	Vs Ns	
			$\frac{1}{Vp} - \frac{1}{Np}$	
			Vs 600	1
			$\frac{10}{30} = \frac{300}{50}$	I
			$V_{c} = 600 \times 20 - 260 V_{c}$	1(awu)
	(b)	(i)	$VS = 600 \times 30 = 300 V$. ,
	(0)	(1)	$\frac{1}{1}$ = $\frac{1}{1}$	
			Np Vp	
			240 _ 40	
			$\frac{1}{6} = \frac{1}{1}$	
			Ns : Np	
			40:1	1
		(ii)	The iron cores become magnetised.	1
		. ,	The two cores are attracted to each other.	1
		(iii)	The bulb becomes dimmer.	1
			Leakage of magnetic flux occurs and the flow of current	1
			decreases.	
			TOTAL	10

NO.			ANSWER	MARK
8.	(a)	(i)	Beta particle penetrate through the paper	1
			Higher reading shows the paper is thin //	1
			Low reading shows the paper is thick	
		(ii)	Low penetrating power // can be stopped by a piece of paper	1
		(iii)	Higher penetrating power	1
	(b) (i) Time take for undecayed nuclei to be reduced to half from its		1	
			original number // activities	
		(ii)	$1 \rightarrow 1/2 \rightarrow 1/4 \rightarrow 1/8 \rightarrow 1/16$	1
			after forty minute = 1/16	1
		(iii)	Beta	1
			TOTAL	8

ESSAY SECTION B

NO.			ANSWER		MARK	
9.	(a)		Apparent weight is actual weigh	t minus the buoyant force	1	
	(b)	(i)	• Apparent weight in 9.1(b) is	more than 9.1(c)	1	
			 The density of water is great 	 The density of water is greater than density of oil 		
			• The buoyant force in 9.1(b)	1		
		(ii)	 The higher the density the g 	1		
			 The greater the buoyant f weight 	1		
	(c)		Rod A and rod B floats in water because their weights are equal to buoyant force // their densities are less than water.			
			 Rod B has greater mass/w Rod A. 	eight and density compared to	1	
			Hence buoyant force/ weigh greater than rod A	nt of water displaced of rod B is	1	
			 Since the cross section of b Some than rod A 	1		
	(d)		Modification			
	(4)		mounication			
			Characteristics	Reason		
			The submarine must be streamlined shape	To reduce water resistance		
			The material used must be	To withstand increasing		
			strong	pressure underwater		
			Equip with ballast tanks	To pump in water to		
				submerge and pump		
			Divide the submeries into	out water to float		
			Divide the submarine into	To protect the crews from		
			strong doors	urowning ir leakage happens		
			Equip the submarine with	To provide air to the crew		
			oxygen tanks		10	
	ΤΟΤΔΙ					
	TOTAL					

NO.			ANSWER		MARK
10.	(a)	(i)	Electromotive force is defined driving one coulomb of charge r	as work done by the battery in round a complete circuit	1
		(ii)	 Emf for both batteries P and 	1	
			• The reading of the voltmete	1	
			 Ammeter reading for battery 	1	
			• The higher the voltage loss	1	
			The higher the voltage resistance.	1	
	(b)		Bulb is brighter using 4 batter	eries in parallel	1
			 4 batteries in parallel has t series 	he same emf as 2 batteries in	1
			Internal resistance for batter	ries in parallel is less	1
			 Current flow is higher wh parallel. 	1	
	(c)		Modification		
			Characteristics	Reason	
			High melting point	Does not melt easily	
			Specific heat capacity of the	Get hot easily //	
			filament is low	the temperature rises faster	
			Coiled coil filament	Longer in length //	
				high resistance //	
				concentrate heat	
			I nin filament	High resistance	
			Nichrome //	High resistance // to produce	
			Wolfrum	noreneal	
					10
TOTAL					20

ESSAY SECTION C

	(ii)	• Draw the ray path correctly		
		30 60 ⁹		1
		 Incident angle is 30⁰ 		1
	(iii)	sin r		
		$n_g = \frac{1}{\sin i}$		
		$\sin r = \sin i (n_a)$		1
		= 15 (Sin 30°)		
		$r = 48.59^{\circ}$		1(awu)
(d)		Decision making		T(awa)
()				
		Characteristics	Reason	
		Convex lens	Produce real image	
		Focal length of objective lens	produce bigger final image //	
		eveniece lens	Increase the linear	
		fo>fe	magnification	
		Distance between two lenses	Normal adjustment to	
		L = fo + fe	produce sharp image	
		Power of eyepiece: High	Produce bigger final image //	
			increase the linear	
		· · · · ·	magnification	
		L	convex lens	
			fe = 6 cm	
			L = fo + fe	
			has high power of eyepiece.	
				10
			101.	AL 20

NO.			ANSWER		MARK
12.	(a)		A beam of electron that moves	1	
	(b)		• Connect the microphone to	1	
			Adjust the time base and Y	1	
			Make 2 claps in front of the	1	
			 The time interval = length 	1	
			magnitude of the time base		
	(c)	(i)	$T = 4 \text{ cm x 1 ms cm}^{-1}$		
			= 4 m s		
		(")	= 0.004 s	1(awu)	
		(11)	$f = \frac{1}{2}$		
			' ⁻ T		
			1		
			$=\frac{1}{0.004}$		1
			= 250 Hz		1(awu)
		(iii)	$v = f\lambda$		
			v 330		
			$\lambda = \frac{1}{4} = \frac{333}{250}$		
			1 250		1
	(-1)		= 1.32 M		1(awu)
	(a)		Decision making		
			Characteristics	Reason	
			2 resistors in series	The resistors act as the	
				potential divider	
			Position of LDR is below //	Produce higher base voltage	
			at base circuit	// Vb > junction voltage	
			npn type is used	Forward biased connection	
			Delev ewiteb	of the cell	
			Relay Switch	sircuit	
			P	The circuit has 2 resistors in	
			•	series	
				Position of LDR is below.	
				npn type is used	
				Relay switch is used	
					10
TOTAL				20	